#### **General Description**

The MAX4450 single and MAX4451 dual op amps are unity-gain-stable devices that combine high-speed performance with Rail-to-Rail® outputs. Both devices operate from a +4.5V to +11V single supply or from ±2.25V to ±5.5V dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications).

The MAX4450/MAX4451 require only 6.5mA of guiescent supply current per op amp while achieving a 210MHz -3dB bandwidth and a 485V/µs slew rate. Both devices are an excellent solution in low-power/lowvoltage systems that require wide bandwidth, such as video, communications, and instrumentation.

The MAX4450 is available in the ultra-small 5-pin SC70 package, while the MAX4451 is available in a spacesaving 8-pin SOT23.

Set-Top Boxes

Video Line Driver

**Digital Cameras** 

**CCD** Imaging Systems

Surveillance Video Systems **Battery-Powered Instruments** 

Analog-to-Digital Converter Interface

Video Routing and Switching Systems

#### **Applications**

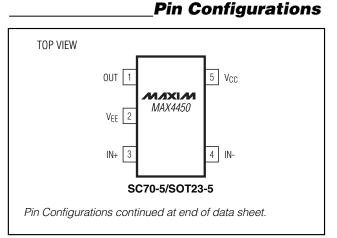
#### **Features**

- Ultra-Small SC70-5, SOT23-5, and SOT23-8 **Packages**
- Low Cost
- High Speed 210MHz -3dB Bandwidth 55MHz 0.1dB Gain Flatness 485V/us Slew Rate
- Single +4.5V to +11V Operation
- Rail-to-Rail Outputs
- Input Common-Mode Range Extends Beyond VEE
- Low Differential Gain/Phase: 0.02%/0.08°
- Low Distortion at 5MHz -65dBc SFDR -63dB Total Harmonic Distortion

### **Ordering Information**

| PART         | TEMP. RANGE    | PIN-<br>PACKAGE | TOP<br>MARK |  |  |
|--------------|----------------|-----------------|-------------|--|--|
| MAX4450EXK-T | -40°C to +85°C | 5 SC70-5        | AAA         |  |  |
| MAX4450EUK-T | -40°C to +85°C | 5 SOT23-5       | ADKP        |  |  |
| MAX4451EKA-T | -40°C to +85°C | 8 SOT23-8       | AAAA        |  |  |
| MAX4451ESA   | -40°C to +85°C | 8 SO            | —           |  |  |

#### Rf 240 $R_{TO}$ 50 $\Omega$ νοιιτ MAXIN $Z_0 = 50\Omega$ 1AX4451 R<sub>0</sub> $50\Omega$ RTIN 500 UNITY-GAIN LINE DRIVER $(R_L = R_O + R_{TO})$


Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

#### **MIXI/M**

Maxim Integrated Products 1

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

#### Typical Operating Circuit



#### **ABSOLUTE MAXIMUM RATINGS**

Supply Voltage (V<sub>CC</sub> to V<sub>EE</sub>).....+12V IN\_-, IN\_+, OUT\_.....(V<sub>EE</sub> - 0.3V) to (V<sub>CC</sub> + 0.3V) Output Short-Circuit Current to V<sub>CC</sub> or V<sub>EE</sub>..........150mA Continuous Power Dissipation (T<sub>A</sub> = +70°C) 5-Pin SC70-5 (derate 2.5mW/°C above +70°C).......200mW 5-Pin SOT23-5 (derate 7.1mW/°C above +70°C).......571mW

| 8-Pin SOT23-8 (derate 5.26mW/°C above +7 | ′0°C)421mW |
|------------------------------------------|------------|
| 8-Pin SO (derate 5.9mW/°C above +70°C)   | 471mW      |
| Operating Temperature Range              |            |
| Storage Temperature Range                |            |
| Lead Temperature (soldering, 10s)        | +300°C     |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### DC ELECTRICAL CHARACTERISTICS

(V<sub>CC</sub> = +5V, V<sub>EE</sub> = 0, R<sub>L</sub> =  $\infty$  to V<sub>CC</sub>/2, V<sub>OUT</sub> = V<sub>CC</sub>/2, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T<sub>A</sub> = +25°C.) (Note 1)

| PARAMETER                                       | SYMBOL          | C                            | MIN                               | ТҮР | MAX                     | UNITS |                            |  |
|-------------------------------------------------|-----------------|------------------------------|-----------------------------------|-----|-------------------------|-------|----------------------------|--|
| Input Common-Mode<br>Voltage Range              | V <sub>CM</sub> | Guaranteed by CN             | V <sub>EE</sub> -<br>0.20         |     | V <sub>CC</sub><br>2.25 | V     |                            |  |
| Input Offset Voltage (Note 2)                   | Vos             |                              |                                   |     | 4                       | 26    | mV                         |  |
| Input Offset Voltage Matching                   |                 |                              |                                   |     | 1.0                     |       | mV                         |  |
| Input Offset Voltage<br>Temperature Coefficient | TCvos           |                              |                                   |     | 8                       |       | µV/°C                      |  |
| Input Bias Current                              | IB              | (Note 2)                     |                                   |     | 6.5                     | 20    | μA                         |  |
| Input Offset Current                            | los             | (Note 2)                     |                                   |     | 0.5                     | 4     | μA                         |  |
| Input Resistance                                | RIN             | Differential mode            | $(-1V \le V_{IN} \le +1V)$        |     | 70                      |       | kΩ                         |  |
| Input nesistance                                | אוח             | Common mode (-0              | $0.2V \le V_{CM} \le +2.75V$ )    |     | 3                       |       | MΩ                         |  |
| Common-Mode Rejection Ratio                     | CMRR            | $(V_{EE} - 0.2V) \le V_{CN}$ | 1≤(V <sub>CC</sub> - 2.25V)       | 70  | 95                      |       | dB                         |  |
|                                                 |                 | $0.25V \le V_{OUT} \le 4.$   | 50                                | 60  |                         |       |                            |  |
| Open-Loop Gain (Note 2)                         | Avol            | $0.5V \le V_{OUT} \le 4.5$   | 48                                | 58  |                         | dB    |                            |  |
|                                                 |                 | $1V \le V_{OUT} \le 4V, R$   |                                   | 57  |                         |       |                            |  |
|                                                 | Vout            | $R_L = 2k\Omega$             | V <sub>CC</sub> - V <sub>OH</sub> |     | 0.05                    | 0.20  |                            |  |
|                                                 |                 |                              | V <sub>OL</sub> - V <sub>EE</sub> |     | 0.05                    | 0.15  | -<br>-<br>-<br>-<br>-<br>V |  |
|                                                 |                 | $R_L = 150\Omega$            | Vcc - Voн                         |     | 0.30                    | 0.50  |                            |  |
| Output Voltage Swing (Note 2)                   |                 |                              | V <sub>OL</sub> - V <sub>EE</sub> |     | 0.25                    | 0.80  |                            |  |
|                                                 |                 | $R_L = 75\Omega$             | V <sub>CC</sub> - V <sub>OH</sub> |     | 0.5                     | 0.80  |                            |  |
|                                                 |                 |                              | VOL - VEE                         |     | 0.5                     | 1.75  |                            |  |
|                                                 | IOUT            | D 500                        | Sourcing                          | 45  | 70                      |       | — mA                       |  |
| Output Current                                  |                 | $R_L = 50\Omega$             | Sinking                           | 25  | 50                      |       |                            |  |
| Output Short-Circuit Current                    | Isc             | Sinking or sourcing          |                                   |     | ±120                    |       | mA                         |  |
| Open-Loop Output Resistance                     | ROUT            |                              |                                   |     | 8                       |       | Ω                          |  |
| Power-Supply Rejection Ratio<br>(Note 3)        |                 |                              | $V_{EE} = 0, V_{CM} = 2V$         | 46  | 62                      |       | aD                         |  |
|                                                 |                 | $V_{CC} = 5V$                | 54                                | 69  |                         | - dB  |                            |  |
| Operating Supply-Voltage<br>Range               | Vs              | VCC to VEE                   |                                   | 4.5 |                         | 11.0  | V                          |  |
| Quiescent Supply Current (per amplifier)        | IS              |                              |                                   |     | 6.5                     | 9.0   | mA                         |  |

#### AC ELECTRICAL CHARACTERISTICS

(V<sub>CC</sub> = +5V, V<sub>EE</sub> = 0, V<sub>CM</sub> = +2.5V, R<sub>F</sub> = 24 $\Omega$ , R<sub>L</sub> = 100 $\Omega$  to V<sub>CC</sub>/2, V<sub>OUT</sub> = V<sub>CC</sub>/2, A<sub>VCL</sub> = +1V/V, T<sub>A</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                           | SYMBOL                          | CONE                                                     | MIN                       | ТҮР  | MAX    | UNITS   |      |  |
|-----------------------------------------------------|---------------------------------|----------------------------------------------------------|---------------------------|------|--------|---------|------|--|
| Small-Signal -3dB Bandwidth                         | BWSS                            | V <sub>OUT</sub> = 100mVp-p                              | 210                       |      |        | MHz     |      |  |
| Large-Signal -3dB Bandwidth                         | BWLS                            | V <sub>OUT</sub> = 2Vp-p                                 | 175                       |      |        | MHz     |      |  |
| Bandwidth for 0.1dB Gain<br>Flatness                | BW <sub>0.1dB</sub>             | V <sub>OUT</sub> = 100mVp-p                              | 55                        |      |        | MHz     |      |  |
| Slew Rate                                           | SR                              | V <sub>OUT</sub> = 2V step                               |                           | 485  |        |         | V/µs |  |
| Settling Time to 0.1%                               | ts                              | Vout = 2V step                                           |                           |      | 16     |         |      |  |
| Rise/Fall Time                                      | t <sub>R</sub> , t <sub>F</sub> | V <sub>OUT</sub> = 100mVp-p                              |                           |      | 4      |         | ns   |  |
| Spurious-Free Dynamic<br>Range                      | SFDR                            | $f_{\rm C} = 5 {\rm MHz}, {\rm V}_{\rm OUT} = 2 {\rm V}$ | -65                       |      |        | dBc     |      |  |
|                                                     | HD                              | fc = 5MHz,<br>V <sub>OUT</sub> = 2Vp-p                   | 2nd harmonic              |      | -65    |         |      |  |
| Harmonic Distortion                                 |                                 |                                                          | 3rd harmonic              |      | -58    |         | aDa  |  |
|                                                     |                                 |                                                          | Total harmonic distortion |      | -63    |         | dBc  |  |
| Two-Tone, Third-Order<br>Intermodulation Distortion | IP3                             | f1 = 4.7MHz, f2 = 4.8MHz, V <sub>OUT</sub> = 1Vp-p       |                           |      | 66     |         | dBc  |  |
| Channel-to-Channel Isolation                        | CHISO                           | Specified at DC                                          |                           |      | 102    |         | dB   |  |
| Input 1dB Compression Point                         |                                 | $f_{C} = 10MHz, A_{VCL} = +$                             |                           | 14   |        | dBm     |      |  |
| Differential Phase Error                            | DP                              | NTSC, $R_L = 150\Omega$                                  |                           | 0.08 |        | degrees |      |  |
| Differential Gain Error                             | DG                              | NTSC, $R_L = 150\Omega$                                  | 0.02                      |      | %      |         |      |  |
| Input Noise-Voltage Density                         | en                              | f = 10kHz 10                                             |                           |      | nV/√Hz |         |      |  |
| Input Noise-Current Density                         | in                              | f = 10kHz 1.8                                            |                           |      | pA/√Hz |         |      |  |
| Input Capacitance                                   | CIN                             |                                                          |                           | 1    |        | pF      |      |  |
| Output Impedance                                    | Zout                            | f = 10MHz                                                |                           | 1.5  |        | Ω       |      |  |

**Note 1:** All devices are 100% production tested at  $T_A = +25$ °C. Specifications over temperature limits are guaranteed by design. **Note 2:** Tested with V<sub>CM</sub> = +2.5V.

Note 3: PSR for single +5V supply tested with  $V_{EE} = 0$ ,  $V_{CC} = +4.5V$  to +5.5V; PSR for dual ±5V supply tested with  $V_{EE} = -4.5V$  to -5.5V,  $V_{CC} = +4.5V$  to +5.5V.

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +2.5V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$  to  $V_{CC}/2, T_A = +25^{\circ}C$ , unless otherwise noted.)

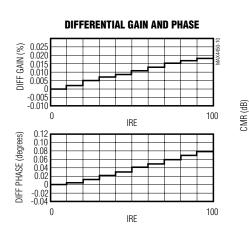
**Typical Operating Characteristics** 

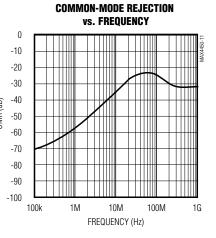
VOLTAGE SWING (Vp-p)

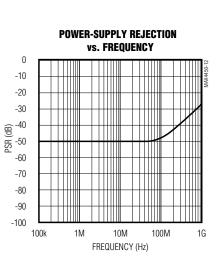
MIXIM

#### **SMALL-SIGNAL GAIN vs. FREQUENCY** LARGE-SIGNAL GAIN vs. FREQUENCY **GAIN FLATNESS vs. FREQUENCY** 0.4 4 4 $V_{OUT} = 100 \text{mVp-p}$ $V_{OUT} = 100 \text{mVp-p}$ 0.3 3 $V_{OUT} = 2Vp-p$ 3 2 0.2 2 0.1 1 1 0 0 GAIN (dB) 0 (dB) GAIN (dB) GAIN (( -1 -0.1 -1 -0.2 -2 -2 -0.3 -3 -3 -0.4 -4 -4 -5 -5 -0.5 -6 -0.6 -6 100k 10M 100k 1M 10M 100M 1G 100k 1M 100M 1G 1M 10M 100M 1G FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) **OUTPUT IMPEDANCE vs. FREQUENCY DISTORTION vs. FREQUENCY DISTORTION vs. FREQUENCY** 0 0 100 $V_{OUT} = 2Vp-p$ -10 V<sub>OUT</sub> = 2Vp-p -10 $A_{VCL} = +2V/V$ $A_{VCL} = +1V/V$ -20 -20 10 -30 -30 IMPEDANCE ( $\Omega$ ) DISTORTION (dBc) DISTORTION (dBc -40 -40 2ND HARMONIC 1 -50 -50 2ND HARMONIC -60 -60 -70 -70 0.1 3RD HARMONIC -80 3BD HARMONIC -80 | | | | |||| -90 -90 -100 0.01 -100 100k 1M 10M 100M 100k 100M 100k 10M 100M 1G 1M 10M 1M FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) **DISTORTION vs. VOLTAGE SWING DISTORTION vs. FREQUENCY DISTORTION vs. RESISTIVE LOAD** 0 0 0 11111 $f_0 = 5MHz$ V<sub>OUT</sub> = 2Vp-p -10 $f_0 = 5 MHz$ -10 -10 $A_{VCL} = +1V/V$ $A_{VCL} = +5V/V$ V<sub>OUT</sub> = 2Vp-p -20 -20 -20 $A_{VCL} = +1V/V$ -30 -30 -30 DISTORTION (dBc) **DISTORTION** (dBc) **DISTORTION (dBc** -40 -40 -40 2ND HARMONIC -50 -50 -50 **3RD HARMONIC** -60 -60 -60 3RD HARMONIC 2ND HARMONIC -70 -70 -70 2ND HARMONIC -80 -80 -80 **3RD HARMONIC** -90 -90 -90 -100 -100 -100 100k 1M 10M 100M 0 200 400 600 800 1000 1200 0.5 1.0 1.5 2.0

 $R_{LOAD}(\Omega)$ 


MAX4450/MAX4451

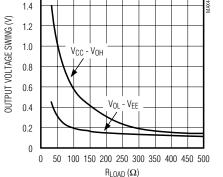

4


FREQUENCY (Hz)

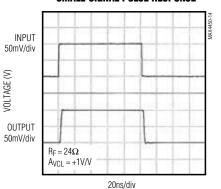
#### **Typical Operating Characteristics (continued)**

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +2.5V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$  to  $V_{CC}/2, T_A = +25^{\circ}C$ , unless otherwise noted.)

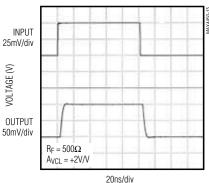


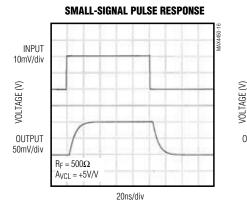




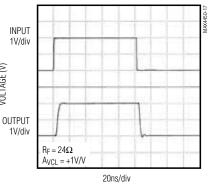


MAX4450/MAX4451

OUTPUT VOLTAGE SWING vs. RESISTIVE LOAD

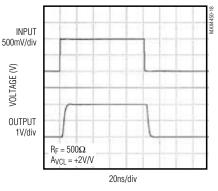

1.6




SMALL-SIGNAL PULSE RESPONSE




SMALL-SIGNAL PULSE RESPONSE






LARGE-SIGNAL PULSE RESPONSE



#### LARGE-SIGNAL PULSE RESPONSE

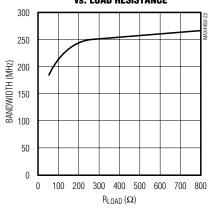


#### **Typical Operating Characteristics (continued)**

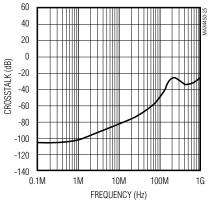
 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +2.5V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$  to  $V_{CC}/2, T_A = +25^{\circ}C$ , unless otherwise noted.) LARGE-SIGNAL PULSE RESPONSE **CURRENT NOISE vs. FREQUENCY VOLTAGE NOISE vs. FREQUENCY** 100 100 INPUT 1V/div /OLTAGE NOISE (pA/√Hz) CURRENT NOISE (pA/VHz) VOLTAGE (V) 10 10 INPUT 1V/div  $R_F = 500\Omega$  $A_{VCL} = +2V/V$ 

FREQUENCY (Hz)

1 10 100 1k 10k 100k 1M 10M

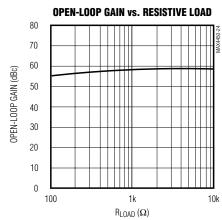

**ISOLATION RESISTANCE** vs. CAPACITIVE LOAD 16 15 14 SMALL SIGNAL 13  $(V_{OUT} = 100 \text{mVp-p})$ 12 11 10 LARGE SIGNAL (V<sub>OUT</sub> = 2Vp-p) 9 50 100 150 200 250 300 350 400 450 500 0 CLOAD (pF)

**SMALL-SIGNAL BANDWIDTH** vs. LOAD RESISTANCE


10 100 1k 10k 100k

1

1




MAX4451 **CROSSTALK vs. FREQUENCY** 





20ns/div



MIXIM

1M

FREQUENCY (Hz)

10M

| PIN     |         | NAME | FUNCTION                                                            |  |  |  |  |
|---------|---------|------|---------------------------------------------------------------------|--|--|--|--|
| MAX4450 | MAX4451 |      | FUNCTION                                                            |  |  |  |  |
| 1       | _       | OUT  | Amplifier Output                                                    |  |  |  |  |
| 2       | 4       | VEE  | Negative Power Supply<br>or Ground (in single-<br>supply operation) |  |  |  |  |
| 3       |         | IN+  | Noninverting Input                                                  |  |  |  |  |
| 4       | _       | IN-  | Inverting Input                                                     |  |  |  |  |
| 5       | 8       | Vcc  | Positive Power Supply                                               |  |  |  |  |
| _       | 1       | OUTA | Amplifier A Output                                                  |  |  |  |  |
|         | 2       | INA- | Amplifier A Inverting<br>Input                                      |  |  |  |  |
|         | 3       | INA+ | Amplifier A Noninverting<br>Input                                   |  |  |  |  |
| _       | 7       | OUTB | Amplifier B Output                                                  |  |  |  |  |
| _       | 6       | INB- | Amplifier B Inverting<br>Input                                      |  |  |  |  |
| _       | 5       | INB+ | Amplifier B Noninverting<br>Input                                   |  |  |  |  |

#### Pin Description

#### Inverting and Noninverting Configurations

Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration ( $R_F = R_G$ ) using  $1k\Omega$ resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the  $1k\Omega$  resistors to  $100\Omega$  extends the pole frequency to 1.59GHz, but could limit output swing by adding  $200\Omega$  in parallel with the amplifier's load resistor. Table 1 lists suggested feedback and gain resistors, and bandwidths for several gain values in the configurations shown in Figures 1a and 1b.

**Layout and Power-Supply Bypassing** These amplifiers operate from a single +4.5V to +11Vpower supply or from dual  $\pm 2.25V$  to  $\pm 5.5V$  supplies. For single-supply operation, bypass V<sub>CC</sub> to ground with a

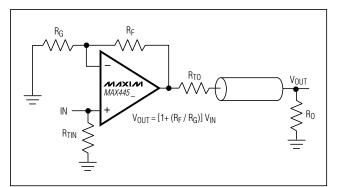



Figure 1a. Noninverting Gain Configuration

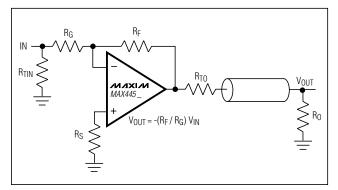



Figure 1b. Inverting Gain Configuration

#### **Detailed Description**

The MAX4450/MAX4451 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 485V/µs slew rates and 210MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.

The output voltage swings to within 55mV of each supply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce gain sensitivity to load variations. The input stage permits common-mode voltages beyond the negative supply and to within 2.25V of the positive supply rail.

#### Applications Information

#### **Choosing Resistor Values**

#### Unity-Gain Configuration

The MAX4450/MAX4451 are internally compensated for unity gain. When configured for unity gain, the devices require a 24 $\Omega$  resistor (R<sub>F</sub>) in series with the feedback path. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.



MAX4450/MAX4451

| COMPONENT                         | GAIN (V/V) |      |      |      |      |      |      |      |      |      |
|-----------------------------------|------------|------|------|------|------|------|------|------|------|------|
|                                   | +1         | -1   | +2   | -2   | +5   | -5   | +10  | -10  | +25  | -25  |
| $R_{F}\left(\Omega ight)$         | 24         | 500  | 500  | 500  | 500  | 500  | 500  | 500  | 500  | 1200 |
| R <sub>G</sub> (Ω)                | ∞          | 500  | 500  | 250  | 124  | 100  | 56   | 50   | 20   | 50   |
| $R_{S}\left(\Omega\right)$        | —          | 0    | —    | 0    |      | 0    |      | 0    | _    | 0    |
| R <sub>TIN</sub> (Ω)              | 49.9       | 56   | 49.9 | 62   | 49.9 | 100  | 49.9 | ∞    | 49.9 | ∞    |
| R <sub>TO</sub> (Ω)               | 49.9       | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 |
| Small-Signal -3dB Bandwidth (MHz) | 210        | 100  | 95   | 50   | 25   | 25   | 11   | 15   | 5    | 10   |

#### **Table 1. Recommended Component Values**

**Note:**  $R_L = R_O + R_{TO}$ ;  $R_{TIN}$  and  $R_{TO}$  are calculated for 50 $\Omega$  applications. For 75 $\Omega$  systems,  $R_{TO} = 75\Omega$ ; calculate  $R_{TIN}$  from the following equation:  $R_{TIN} = \frac{75}{\Omega}$ 

$$R_{\text{TIN}} = \frac{75}{1 - \frac{75}{R_{\text{G}}}}$$

 $0.1\mu F$  capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a  $0.1\mu F$  capacitor.

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following design guidelines:

- Don't use wire-wrap boards; they are too inductive.
- Don't use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

#### Rail-to-Rail Outputs, Ground-Sensing Input

The input common-mode range extends from (V<sub>EE</sub> - 200mV) to (V<sub>CC</sub> - 2.25V) with excellent commonmode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup.

The output swings to within 55mV of either power-supply rail with a  $2k\Omega$  load. The input ground sensing

and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single +5V application, the input can swing 2.95Vp-p and the output can swing 4.9Vp-p with minimal distortion.

#### **Output Capacitive Loading and Stability**

The MAX4450/MAX4451 are optimized for AC performance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a circuit that eliminates this problem. Figure 3 is a graph of the optimal isolation resistor (Rs) vs. capacitive load. Figure 4 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually  $20\Omega$  to  $30\Omega$ ) placed before the reactive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a  $27\Omega$  isolation resistor on closed-loop response.

Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line's capacitance.

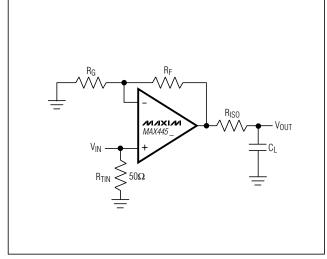



Figure 2. Driving a Capacitive Load Through an Isolation Resistor

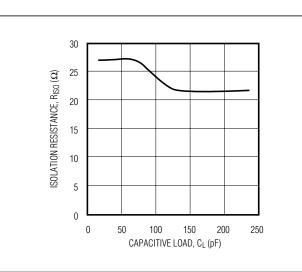



Figure 3. Capacitive Load vs. Isolation Resistance

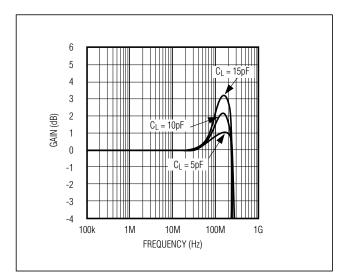



Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

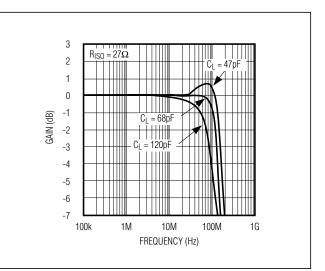
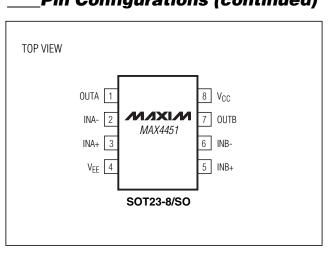
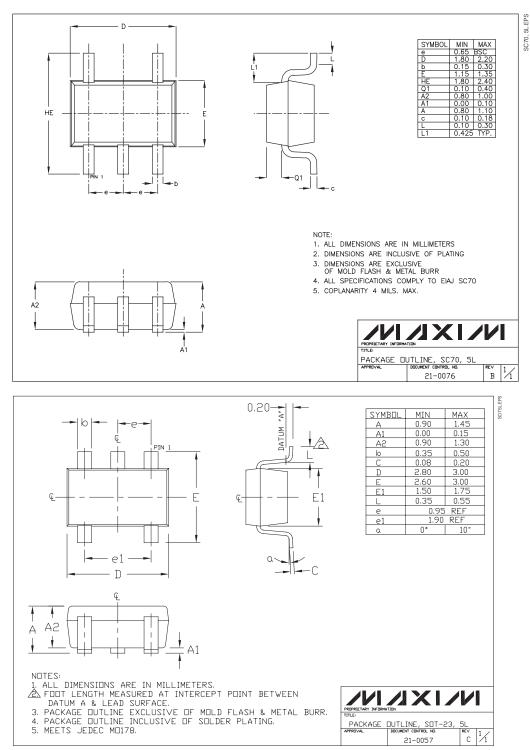



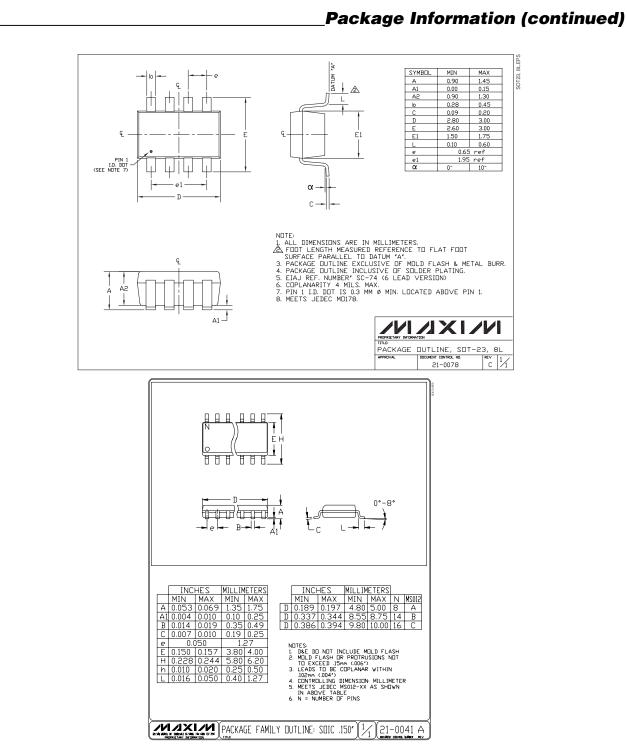

Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and  $27\Omega$  Isolation Resistor

MAX4450/MAX4451




#### Pin Configurations (continued)

**Chip Information** 


MAX4450 TRANSISTOR COUNT: 86 MAX4451 TRANSISTOR COUNT: 170

#### **Package Information**



MAX4450/MAX4451

M/IXI/M



## Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

#### \_\_\_\_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2000 Maxim Integrated Products

12

Printed USA

**MAXIM** is a registered trademark of Maxim Integrated Products.